
Energies and Derivative Couplings in the Vicinity of a Conical Intersection Using
Degenerate Perturbation Theory and Analytic Gradient Techniques. 1

David R. Yarkony†

Department of Chemistry, The Johns Hopkins UniVersity, Baltimore, Maryland 21218

ReceiVed: January 8, 1997X

Analytic gradient techniques in conjunction with degenerate perturbation theory are used to analyze the
energetics and the derivative couplings in the vicinity of a conical intersection. The precision of the analytic
gradient based evaluation of the derivative couplings in the vicinity of a conical intersection is established.
An approach for the rigorous treatment of two-dimensional Jahn-Teller problems in the absence ofC3V symmetry
is suggested.

I. Introduction

Nonadiabatic effects are particularly important in the vicinity
of a conical intersection. A complete description of
the electronic structure in this region requires both the
energies, EI(R), and derivative couplings, f R

IJ(R) )
〈ΨI(r ;R)|(∂/∂RR)ΨJ(r ;R)〉r, where

andH(r ;R) is the nonrelativistic electronic Hamiltonian. In this
work the energetics and derivative couplings in the vicinity of
a conical intersection are analyzed using degenerate perturbation
theory and quantities readily obtained from electronic structure
calculations employing analytic gradient techniques. As dis-
cussed by Mead1 and subsequently by Kupperman2 when the
total energy available to a system exceeds the maximum energy
on the lower adiabatic potential energy surface along a closed
loop surrounding a conical intersection (this energy may be
much less than the energy at the conical intersection itself),
adiabaticnuclear dynamics on that potential energy surface may
be altered by the geometric phase effect.3-7 An approach for
analyzing these energetics is suggested. Another goal of this
study is to assess the precision of derivative couplings, evaluated
with techniques previously introduced by the author together
with Lengsfield and Saxe,8-10 in the vicinity of a conical
intersection. This analysis is important since surfaces of
derivative couplings determined byab initio techniques for
systems exhibiting conical intersections are highly desirable.
Section II presents the theoretical development providing the

perturbation analysis and its connection to electronic structure
calculations. The perturbation analysis is based on the seminal
work of Mead on conical intersections in X3 molecules.11 See
also ref 4. Section III considers the 11A′ - 21A′ seam of conical
intersections in HeH2. This system was selected for analysis
because the seam of conical intersections involves nuclear
configurations with onlyCs symmetry so that symmetry
arguments cannot be used to simplify the analysis. This seam
of conical intersections is relevant to the electronic quenching
reaction

which has been the subject of much theoretical12-16 and
experimental17-19 interest in the recent past. Section IV
summarizes and suggests directions for future research.

II. Theoretical Approach

The electronic structure calculations employ multiconfigu-
rational self-consistent field (MCSCF)10/configuration interac-
tion (CI)20 wave functions. In the MCSCF/CI approach the
adiabatic electronic states,ΨI(r ;R), are expanded in a config-
uration state function (CSF)20 basis

where thecI(R) satisfy

The molecular orbitals used to build theψ(r ;R) are obtained
from a state-averaged MCSCF procedure.10

A. Degenerate Perturbation Theory in a Crude Adiabatic
Basis. Assume thatRx is a point of intersection of two potential
energy surfaces,EI(R), I ) 1 - 2. A new basis forH(r ;R) is
constructed from a fixed, geometry-independent transformation
of the CSF basis. The first two components of the basis are
cI(Rx)† ψ(r ;R), I ) 1 - 2, satisfying eq 4. Denote this as the
Q-space. Its orthogonal complement is theP-space. The
orthonormal functions in theP-space, denotedCK(Rx)† ψ(r ;R),
K ) 3 - NCSF, need only be orthogonal tocI(Rx)† ψ(r ;R), I )
1 - 2. TheCK(Rx) are not, in general, eigenfunctions ofH(Rx).
This basis has only a limited geometry dependence through the
CSFs. It is similar to the “crude adiabatic” basis introduced
by Longuet-Higgins in his classic treatment of the Jahn-Teller
and Renner-Teller effects3 and will be denoted as such
subsequently.
In the crude adiabatic basis, at anyR, eq 4 becomes

where

for I, J e 2 andK, L > 2. Here and below the lettersI andJ
will be used to denote the two degenerate states.
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[H(r ;R) - EI(R)]ΨI(r ;R) ) 0 (1)

H2(B
1Σu

+) + Hef H2(X
1Σg

+) + He (2)

ΨI(r ;R) ) ∑
R)1

NCSF

cR
I (R) ψR(r ;R) (3)

[H(R) - EI(R)]c
I(R) ) 0 (4)

(HQQ(R) - IEI(R) HQP(R)

HPQ(R) HPP(R) - IEI(R) )(êI(R)

¥I(R) ) ) (00) (5)

HIJ
QQ(R) ) cI(R)†H(R) cJ(Rx) (6a)

HIK
QP(R) ) CK(Rx)

†H(R) cI(Rx) (6b)

HKL
PP(R) ) CK(Rx)

†H(R) cL(Rx) (6c)
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At a neighboring nuclear configuration,R ) δR + Rx, the
Hamiltonian matrix in the CSF basis becomes

Note that the changes inH(R) result from both changes in the
Hamiltonian operator, through the electron - nuclei attraction
term, and changes in the molecular orbitals used to construct
the CSFs. Thus, in the crude adiabatic basis

where we have observed thatHIJ
QQ(Rx) ) 0,HII

QQ(Rx) ) EI(Rx),
defined:

and

Note that atRx, gR
I (Rx) ) ∂EI(Rx)/∂RR. gI(R) andhIJ(R) are

readily determined using analytic gradient techniques21whereas
theηI andηIJ are quite costly to evaluate for MCSCF/CI wave
functions.
Consider, following Mead,11 êI(R), ¥I(R), andHRS(R) to be

expanded in a power series inδR as follows

with the expansion ofHRSgiven by eqs 8b, 9b, and (to the order
required here)

where we have observed thatHIL
QP(Rx) ) 0. Through second

order in perturbation theory

and

which implies

where

Note that the geometry-independentê0,I become the geometry-
dependentễ0,I(R) by requiring eq 15a.
It is useful at this point to define, theg-h(Rx) plane by the

vectors,gIJ(Rx)≡ gJ(Rx) - gI(Rx) andhIJ(Rx), and its orthogonal
complement,g-h⊥(Rx), a space of dimensionNint - 2, where
Nint is the number of internal degrees of freedom. From eqs 8,
9, and 15a it is seen that only in theg-h plane is the degeneracy
lifted at first order in perturbation theory.
Using eqs 8-11 in eq 15a gives

wherex ) F cos θ [y ) F sin θ] is the displacement along
g̃IJ(Rx) [gjIJ(Rx)], a unit vector in nuclear coordinate space
parallel [perpendicular] togIJ(Rx) in the g-h(Rx) plane; z
represents the internal nuclear coordinates in theg-h⊥(Rx)
manifold,

H(R) = H(Rx) + ∑
RR

∂H(Rx)

∂RR

∂RR +

1/2 ∑
RR,Râ

δRâ

∂
2H(Rx)

∂Râ∂RR

δRR (7)

HII
QQ(R) = EI(Rx) + gI(Rx)

†‚δR + 1/2δR
†‚ηI(Rx)‚δR (8a)

≡ HII
0,Q + HII

1,Q(R) + HII
2,Q(R) (8b)

HIJ
QQ(R) = hIJ(Rx)

†‚δR + 1/2δR
†‚ηIJ(Rx)‚δR (9a)

≡ HIJ
1,Q(R) + HIJ

2,Q(R) (9b)

gR
I (R) ) cI(Rx)

† ∂H(R)
∂RR

cI(Rx) (10a)

ηâR
I (R) ) cI(Rx)

† ∂
2H(R)
∂Râ∂RR

cI(Rx) (10b)

hR
IJ(R) ) cI(Rx)

† ∂H(R)
∂RR

cJ(Rx) (11a)

ηâR
IJ (R) ) cI(Rx)

† ∂
2H(R)
∂Râ∂RR

cJ(Rx) (11b)

êI(R) = ê0,I(Rx) + ê1,I(R) + ê2,I(R) + ... (12a)

¥I(R) = ¥1,I(R) + ¥2,I(R) + ... (12b)

HIK
QP(R) = ∑

R
cI(Rx)

†
∂H(Rx)

∂RR

CK(Rx) ∂RR ≡ HIK
1,QP(R) (13)

HLK
PP(R) = CL(Rx)

†H(Rx) C
K(Rx) +

∑
R
CL(Rx)

†
∂H(Rx)

∂RR

CK(Rx) ∂RR (14a)

≡ HKL
0,P + HKL

1,P(R) (14b)

[H1,Q(R) - IWI
(1)(R)]ễ0,I(R) ) 0 (15a)

¥1,I(R) ) [IEI(Rx) - H0,P]-1H1,PQ(R) ễ0,I(R) (15b)

[Hh 2,Q(R) - WI
(2)(R)]ễ0,I(R) + [H1,Q(R) - WI

(1)(R)]ễ1,I(R) )
0 (16)

ễ1,I(R) )

ễ0,J (R)[ễ0,J(R)†Hh 2,Q(R) ễ0,I(R)]/[WI
(1)(R) - WJ

(1)(R)] (17a)

WI
(2)(R) ) ễ0,I(R)†Hh 2,Q(R) ễ0,I(R) (17b)

Hh 2,Q(R) ) H2,Q(R) + H1,QP(R)[IEI(Rx) - H0,P]-1H1,QP(R)
(18)

(-∆HIJ
1,Q HIJ

1,Q

HIJ
1,Q ∆HIJ

1,Q)(ễ1
0,I

ễ2
0,I ) )

(-gx hxx+ hyy
hxx+ hyy gx )(ễ1

0,I

ễ2
0,I ) ) εI(ễ1

0,I

ễ2
0,I ) (19)

∆HIJ
Q(R) ≡ (HJJ

QQ(R) - HII
QQ(R))/2=

∆HIJ
1,Q(R) + ∆HIJ

2,Q(R) (20a)

WI
1(R) ) εI(F,θ) + H (F,θ,z;s) ≡

εI(F,θ) + sxx+ syy+ sz
†‚z (20b)

g) |gIJ(Rx)|/2 (21)

hx ) hIJ(Rx)‚g̃
IJ(Rx) (22a)
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and sz is the projection of [gI(Rx) + gJ(Rx)]/2 onto the
g-h⊥(Rx) manifold. Equivalent results are obtained ifhIJ(Rx)
is taken as thex-axis.
Equation 19 can be transformed into a more convenient form

by definingq(θ) andλ(θ)

so that eq 19 becomes:

The eigenvalues and eigenfunctions (in the CSF basis) of eq
25 are (forI ) K- andJ ) K+)

where as the notation in eq 26b indicates theR dependence of
the CSFs,ψ(r ;R), is subordinate to that induced by the
perturbation expansion.
Thus the parameters in eqs 21-23, which are readily

evaluated using analytic gradient techniques, determine the
topology of the potential energy surfaces in the immediate
vicinity of a conical intersection. We will refer toF, θ, andz
as canonical coordinates andgIJ(Rx), hIJ(Rx), ands(Rx) as the
characteristic parameters. It is important to observe thatcI(Rx)
andcJ(Rx) are defined up to a one parameter rotation so that
only theg-h plane is uniquely defined. Thus while the definition
of the x-axis is fixed oncecI(Rx) andcJ(Rx) are defined, it is
not unique and the parametersgIJ(Rx), hIJ(Rx), ands(Rx) are
not unique either. This point will be considered further in
section III.
B. Geometric Phase Effect.From eqs 24 and 26b it is seen

that when the electronic wave functions are transported around
a circle in theg-h plane, that is whenθ increases by 2π, λ
increases by 2π but sinceλ/2 only increases byπ, ễ0,K( f
-ễ0,K(. This is the geometric phase effect.3,22,5 If the (infini-
tesimal) closed loop does not contain a point of conical
intersection, nondegenerate perturbation theory suffices and a
sign change on transporting the electronic wave function around
a closed loop is not possible since the zeroth-order component
can never vanish.4

C. Derivative Couplings. In conventional uses of degener-
ate perturbation theory, lower order wave functions are used to
determine higher order energies. Mead observed11 that in the
presence of a conical intersection higher order energies ofone
potential energy surface could be used to infer information about
lower order wave functions for both states and hence about the
energetics on the companion surface and the derivative cou-
plings; see for example eqs 17a and 17b. Here we focus on
the derivative couplings since knowledge of their limiting form

at a conical intersection can be used to assess the precision of
the numerical procedures used in their evaluation.
f R
JI(R), consists of two contributions

where the CI contribution is given by

and the CSF contribution has the form

In the vicinity of a conical intersection the CI portion of the
derivative coupling is preeminent,10 although both contributions
will be evaluated in the MCSCF/CI treatment.
The first term in eq 28a contains the first nonvanishing

contribution to the derivative coupling. The form of this term
can be deduced from eqs 17a, 17b, and 26b. In the development
that follows we restrict our attention to triatomic molecules for
which the orientation of theg-h plane is constant along the
crossing seam. This approximation is valid for the 11A′ - 21A′
seam in HeH2 and has been used previously by Kendrick and
Pack in their treatment of the geometric phase effect in O2H.23-25

With this assumption and sinceH(R) is real-valued

whereσx andσz are the Pauli matrices,26

and the contribution from a unit (2× 2) matrix has been ignored.
Transforming to theễ0,K( basis by notingσ̃x≡ u(λ)† σx u(λ) )
-sin λ σz + cosλ σx andσ̃z ) sin λ σx + cosλ σz, whereu(λ)
is the 2× 2 matrix in eq 26b gives

so that

Noting, from eq 26b that

gives for the first nonvanishing terms

hy ) hIJ(Rx)‚gj
IJ(Rx) (22b)

sx ) [gI(Rx) + gJ(Rx)]‚g̃
IJ(Rx)/2 (23a)

sy ) [gI(Rx) + gJ(Rx)]‚gj
IJ(Rx)/2 (23b)

f R
JI(R) ) CIf R

JI(R) + CSFf R
JI(R) (27)

CIf R
JI(R) ) ễJ(R)†( ∂∂RR

ễI(R)) + ¥J(R)†( ∂∂RR
¥I(R)) (28a)

CSFf R
JI(R) ) ∑

λ,µ

cλ
J(R)〈ψλ(r ;R)| ∂∂RR

ψµ(r ;R)〉
r

cµ
I (R) (28b)

Hh 2,Q(R) ) F[A(θ,z) σz + B(θ,z) σx] (29)

A(F,θ,z) ) z(a1 cosθ + a2 sinθ) + F(a3 cos
2 θ +

a4 sin
2 θ + a5 sinθ cosθ) (30a)

B(F,θ,z) ) z(b1 cosθ + b2 sinθ) + F(b3 cos
2 θ +

b4 sin
2 θ + b5 sinθ cosθ) (30b)

Hh 2,Q ) F[(A cosλ - B sinλ)σz + (A sinλ + B cosλ)σx]
(31)

ễI = ễ0,I +
(A(F,θ,z) sinλ(θ) + B(F,θ,z) cosλ(θ))

2 q(θ)
ễ0,J

(32a)

ễJ = ễ0,J -
(A(F,θ,z) sinλ(θ) + B(F,θ,z) cosλ(θ))

2 q(θ)
ễ0,I

(32b)

ễ0,J(θ)† ∂
∂λ

ễ0,I(θ) ) 1/2 (33a)

ễ0,J(θ)† ∂
∂τ

ễ0,I(θ) ) 0 τ ) F, z (33b)

q(θ)2 ) g2 cos2 θ + (hx cosθ + hy sinθ)2≡ g2 cos2 θ +

h2 sin2(θ + R) (24a)

cosλ ) g/q cosθ sinλ ) h/q sin(θ + R) (24b)

Fq(-cosλ sinλ
sinλ cosλ )(ễ1

0,I

ễ2
0,I )) εI(ễ1

0,I

ễ2
0,I ) (25)

εK( ) (Fq(θ) (26a)

(ễ0,K
-
(θ)

ễ0,K
+
(θ) )) (cosλ(θ)/2 -sinλ(θ)/2

sinλ(θ)/2 cosλ(θ)/2 )(c1(Rx)† ψ(r ;R)

c2(Rx)† ψ(r ;R) )
(26b)
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where

and the “barred” constants can be obtained from theai andbi
in eq 30 by straightforward algebra. IfgIJ and hIJ are
perpendicular and of equal length, the right hand side of eq
34a is 1/2. TheF f 0 limit of f z

JI(F,θ,z) obtained here in the
absence of spatial symmetry differs qualitatively from the
symmetry-determined X3 case for whichf z

JI(F,θ,z) f 0 asF f
0.11

D. The Circulation of the Derivative Coupling. From eq
34a, the circulation off IJ(R) along an infinitesimal loop in the
g-h plane surroundingRx is given by:

However, ifC does not contain a point of conical intersection,
then the circulation off IJ(R) approaches 0 asF decreases to
zero. Thus the line integral in eq 36 can be used to prove the
existence of a conical intersection point. Below it will be
convenient to denote a circle in theg-h plane with origin O
and radiusF, by C(F,O) and to denote the set of values of a
functionw(R) on C by w[C].
The inverse of the transformation in eq 26b provides a

transformation to a basis that removes the singularity in the
derivative coupling. Thus the angleλ(θ) can be used as the
rotation angle of a transformation to approximate diabatic states.
This transformation can be used together withab initio energies
and derivative couplings to extend the standard two-dimensional
treatment of a Jahn-Teller problem27 to nonC3V molecules. In
the present approach the interstate coupling would consist of
both potential and derivative coupling contributions. The
residual derivative coupling would be nonsingular but would
be more than just the nonremovable part, the portion of the
derivative coupling that cannot be removed by a transformation
to approximate diabatic states.28 In this regard note that the
quantity

where κ(C) ) 0[π] if C contains no [one] point of conical
intersection represents a measure of the nonremovable part of
the derivative coupling.28,29

III. The 1 1A′ - 21A′ Seam of Conical Intersections in
HeH2

For the triatomic molecule HeH2 molecular geometries will
be specified by the Jacobi coordinates:r the H1-H2 distance,
R the distance between He and the center of mass of H2, andγ
the angle between the line segments corresponding toR andr,
such thatγ ) 90° for C2V geometries. See Figure 1. The
adiabatic electronic wave functions are based on a second-order
CI expansion30 using a four a′ orbital active space and
He[7s2p1d], H[6s3p] basis sets as described in detail previ-
ously.14 This level of treatment was previously used to
determine points,Rx, on the 11A′ - 21A′ seam of conical
intersections which was parameterized byr, that isRx(r)≡ [R(r),
γ(r), r]. Here twoRx(r) will be considered, the minimum energy
crossing pointRmex ≡ Rx(3.7294) andRx(4.0). In this work
the x-axis is taken alonghIJ so that Table 1 reportsR, γ, r, g,
h, ands for these two points. Figure 1 depictsgIJ(Rmex) and

CIf θ
JI(R) ) 1/2

dλ
dθ

) 1/2
|gIJ/2|sin(R + π/2)|hIJ|

q2(θ)
(34a)

CIf F
JI(R) ) m1(θ)/q(θ) (34b)

CIf z
JI(R) ) m2(θ)/q(θ) (34c)

m1(θ) ) cj1 cos(λ + γj1) + [(aj11 cos 2θ + aj21 sin 2θ)sinλ +
(bh11 cos 2θ + bh21 sin 2θ)cosλ] (35a)

m2(θ) ) aj2 cos(θ - Rj1) sinλ + bh2 cos(θ - âh1) cosλ (35b)

TABLE 1: HeH 2 11A′ - 21A′ Crossing Seama

R (a0)
r (a0)

γ (deg)
E (kcal/mol)
∆E (cm-1) h (au) g (au) s (au)

Rmex) Rx(3.73)
1.5662 3.7294 -38.141 0.0879 0.0181 -0.0558

44.373 0.020 0.1630 0.2051
0.0002

Rx(4.0)
1.6601 4.0000 -36.891 0.0753 (0.1244) 0.0135 (-0.0821) -0.0069 (-0.2178)

40.316 0.021 0.1607 (0.0972) -0.2336 (0.0849)
0.0070 (0.0070)

a ∆E ) E21A′ - E11A′. E ) E11A′ ∼ E21A′ relative toE21A′ ) -3.650 107 au atr ) 2.393 a0, R) 50 a0. ForRx(4.0) the second parameter set is
given parenthetically. Forg ands, x,y andx,y,z components are given down the corresponding column.

IC f
IJ(R)‚dR )∫02π

1/2 dλ ) π (36)

∆(C) ≡ IC f
IJ(R)‚dR - κ(C) (37)

Figure 1. Unit vectors in the directionshIJ(Rmex) andgIJ(Rmex)⊥ (the
component ofgIJ(Rmex) in the g-h plane perpendicular tohIJ(Rmex)),
represented in terms of atomic displacements. Also displayed are the
Jacobi coordinates,R, r, γ.
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hIJ(Rmex). ForRx(4.0) two sets of characteristic parameters are
reported. Note that although the (c I(Rx), c J(Rx)) pairs associ-
ated with these two sets of parameters are related by a rotation,
the corresponding (gIJ(Rx), hIJ(Rx)) pairs are not so related.
A. Rotational Invariance of Conical Intersection Param-

eters. As observed above while theg-h plane is uniquely
defined, the vectorsgIJ and hIJ, and hence the characteristic
parameters for the conical intersection, are arbitratry up to a
one-parameter rotation. One measure of the precision of the
numerical procedures used to determine the characteristic
parameters is provided by the consistency of two sets of
characteristic parameters at a particular point on the surface of
conical intersection. Table 1 reports two such sets of charac-
teristic parameters forRx(4.0). The equivalence of these
parameter sets can be demonstrated in many ways. Figure 2a,b
provides one such demonstration reportingEI[C(0.1,Rx(4.0))]
and fθ[C(0.1,Rx(4.0))], respectively obtained from MCSCF/CI

Figure 3. (a) fτ[C(F,Rmex)], τ ) r, R, γ for F ) 0.01, fromab initio
calculations. (b)E11A′[C(F,Rmex)], triangular markers, andfθ[C(F,Rmex)],
square markers, forF ) 0.01. Filled markers are fromab initio
calculations; open markers are from perturbation theory using the
parameter set in Table 1. (c) fτ[C(F,Rmex)], τ ) z (filled circles), F
(open circles) forF ) 0.01 fromab initio calculations.

Figure 2. E11A′[C(F,Rx(4.0))], E21A′[C(F,Rx(4.0))], (a), and
fθ[C(F,Rx(4.0))], (b), from MCSCF/CI wave functions forF ) 0.1
with C(F,Rx(4.0)) obtained from two distinct parameter sets in Table
1. Open markers represent the first parameter set, filled markers the
second (parenthetical) parameter set. Energies are in eV relative to
E11A′(Rx(4.0))) -3.710 887 au.
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wave functions withC(0.1,Rx(4.0)) determined from these two
sets of characteristic parameters. Here and below theJI
superscript on the derivative coupling will be suppressed. From
this figure it is clear that the solid curves (first parameter set)
can be brought into coincidence with the dashed curves (second
parameter set) by a shift of-120°.
B. Energies and Derivative Couplings: Comparison with

the Linear Expansion. We next turn to the energetics and
derivative couplings in the immediate vicinity of a conical
intersection, usingRmex. Figure 3 considersF ) 0.01. Figure
3a reportsfτ[C(0.01,Rmex)], τ ) r, R, γ. The large values of
the derivative couplings in this Jacobi representation are
consistent with the small value ofF. The size of the derivative
couplings in this representation suggests that numerical problems
may be obtained when transforming to the “canonical”,z, F, θ,
representation. However this is emphatically not the case.
Figure 3b reportsE11A′[C(0.01,Rmex)] and fθ[C(0.01,Rmex)]
determined from MCSCF/CI wave functions and from eqs 20b,
26a and 34a using the parameter set from Table 1.

Figure 5. E11A′[C(F,Rmex)] for F ) 0.25 (a), 0.50 (b), and 0.75 (c) as
determined fromab initio calculations,E(ab), and from eqs 20 and
26a,E(pt-1).

Figure 4. Convergence of fτ[C(F,Rmex)] from ab initio calculations
for F ) 0.25 (solid squares), 0.1 (solid circles), 0.05 (×), and 0.01
(open circles); (a)τ ) z, (b) τ ) F.
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E11A′[C(0.01,Rmex)] and fθ[C(0.01,Rmex)] calculated from MC-
SCF/CI wave functions areVirtually identical with those
obtained from first-order perturbation theory. Figure 3c reports
fF[C(0.01,Rmex)] andfz[C(0.01,Rmex)] determined fromab initio
calculations. On the basis of the results in Figure 3b, and as
discussed below, these values are expected to be close to their
F ) 0 values. While the specifics of theθ-dependence of
fτ[C], τ ) F, z require second-derivative informationsmore
expensive to obtain than the derivative couplingsit is worth
noting thatfF[C] has higher frequency oscillations thanfz[C]
which is consistent with the functional forms in eqs 34b and
34c.
The F-dependence offτ[C] is considered in more detail in

Figure 4. This figure, which reportsfτ[C(F,Rmex)] for F ) 0.25
(solid squares), 0.1 (solid circles), 0.05 (x), and 0.01 (open
circles), illustrates thatfτ[C(F,Rmex)], τ ) z (Figure 4a), andτ
) F (Figure 4b) in fact converge to a finite limit in a well-
behaved manner asF f 0. In this regard observe that forF e
0.05 the results are indistinguishable.
The excellent agreement between the perturbation theory and

the MCSCF/CI-based results in the immediate vicinity of the
conical intersection serves to confirm the precision of the
numerical techniques8-10 used to evaluate the derivative cou-
plings in this most challenging, yet essential, region of
coordinate space.
C. Energetics and Derivative Couplings along Closed

Loops in the g-h Plane. We now considerE11A′[C(F,Rmex)]
and fτ[C(F,Rmex)] for F ) 0.25, 0.50, 0.75. These calculations
address two issues of practical importance for the dynamics of
reaction 2, the energy of the lower adiabatic potential energy
surface relative to that of the conical intersection, and the
nonremovable part of the derivative coupling. As discussed
by Mead1 and subsequently by Kupperman2 when the total
energy available to a system exceedsEI[C], adiabaticnuclear
dynamics on that potential energy surface may be altered by
the geometric phase effect. In this regard parts a - c ofFigure
5 evince significant barriers along such closed loops atθ ∼
-90° for F ) 0.25, 0.50, and 0.75, respectively, while
particularly favorable energetics occur atθ ∼ 90°. The F )
0.25 results suggest the following interpretation.W1[C] is the
sum of two contributions,H (F,θ,z;s) and -q(θ)F (always
negative); see eqs 20b and 26a. Thus the large value of sy,
compared withg andh precludes a low-energy path surrounding
Rmex. This interpretation is also supported by the smallF results
in Figure 3b. A similar situation is found forRx(4.0). See
Figure 2a.
Additional insight in this regard is provided by Figure 6 which

depicts the nuclear configurations forF ) 0.5 andθ ) (90°.
From this figure it is seen that the barrier (θ ∼ -90°) occurs
for configurations characterized as H+ HeH and results from
the small value of R(He-H2). This is, in turn, a consequence
of the small value of R(He-H2) atRmex, R(He-H2) ) 1.05 a0.
Note from Figure 1 thatθ ) (90° is largely an He-H2 stretch.
Note too that HeH is not bound in its ground electronic state.31

The favorable energetics occur for triangular H-He-H con-
figurations. Quite the opposite situation was found for H3.32

For the 12A′ ground state of H3, the maximum of
E12A′[C(0.5,Rmex)] is less thanE12A′(Rmex) by approximately 1.3
eV. In this case sx ) sy ) 0, and the H+ H2 configuration is
energetically favorable.
This analysis suggests that the energetics in the vicinity of a

conical intersection can be profitably analyzed in terms of the
characteristic parameters presented in eqs 21-23. Future studies
will attempt to better understand the relationships amongq(θ),
s, the configurations alongC(F,Rmex), and henceEI[C(F,Rmex)].

Evaluation of∆(C), eq 37, provides a quantitative measure
of the size of the nonremovable part of the derivative coupling.
NearRmex we find [F, ∆(F, Rmex)] ) [0.005, 0.0001π], [0.01,
0.0001π], [0.05, 0.0004π], [0.1, 0.0014π], [0.25, 0.0094π], [0.5,
0.0485π], [0.75, 0.0513π]. Note that the calculation of the
derivative coupling is tractable even forF ) 0.005. The values
of ∆(C), which represent a deviation of at most 9° from the
removable result, show that the nonremovable part of the
derivative coupling is small even forF ) 0.75 a0, for which
E11A′ is, in turn, quite large for a significant portionC. See
Figure 5c. Consequently it should be possible to construct
diabatic states to an excellent approximation for this system.
This question will be considered in detail in a future work in
which energy and derivative coupling surfaces will be reported
for the 11A′ and 21A′ states. An analysis of the nonremovable
part of the derivative coupling for H3 analogous to that discussed
above can be found in ref 29. A formal analysis of the
derivative couplings in H3 can be found in ref 11.

IV. Summary and Conclusions

The derivative couplings and the energetics in the vicinity
of a conical intersection have been considered. Using degener-
ate perturbation theory it is shown that previously developed
analytic gradient based techniques provide a reliable method
for evaluating derivative couplings in the immediate vicinity
of a conical intersection. These numerical procedures can
therefore be used to determine an entire surface of derivative
couplings that will reliably merge into regions of conical
intersections. The analysis yields an approximate diabatization
scheme that can be used in conjunction withab initio, derivative
couplings, and potential energy surfaces to extend the standard
two-dimensional treatment of the dynamic Jahn-Teller effect
to molecules that do not possessC3V symmetry.
The 11A′ - 21A′ seam of conical intersections in HeH2 was

considered. It was shown that a barrier along closed loops
surrounding points on the seam of conical intersections is

Figure 6. Nuclear configurations corresponding to the low-energy
region (lower panel),θ ) 90°, R(He-H1) ) 3.06 a0, R(He-H2) )
2.02 a0, andR(H1-H2) ) 4.03 a0, and high-energy region (upper panel),
θ ) -90°, R(He-H1) ) 3.32 a0, R(He-H2) ) 0.653 a0, and
R(H1-H2) ) 3.45 a0 of E11A′[C(F ) 0.50,Rmex)].
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attributable to the energetically unfavorable H+ HeH structure
and that this barrier is reflected in the characteristic parameters
for the conical intersection determined from analytic gradient
techniques. It will therefore be interesting to investigate the
relation between energetics in the vicinity of conical intersec-
tions and the characteristic parameters for molecules for which
the A + BC structure is more energetically favorable.
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