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Energies and Derivative Couplings in the Vicinity of a Conical Intersection Using
Degenerate Perturbation Theory and Analytic Gradient Techniques. 1

David R. Yarkony"
Department of Chemistry, The Johns Hopkins dgmsity, Baltimore, Maryland 21218

Receied: January 8, 1997

Analytic gradient techniques in conjunction with degenerate perturbation theory are used to analyze the
energetics and the derivative couplings in the vicinity of a conical intersection. The precision of the analytic

gradient based evaluation of the derivative couplings in the vicinity of a conical intersection is established.

An approach for the rigorous treatment of two-dimensional Jahn-Teller problems in the absgsnyonfmetry

is suggested.

I. Introduction Il. Theoretical Approach

Nonadiabatic effects are particularly important in the vicinity The electronic structure calculations employ multiconfigu-
of a conical intersection. A complete description of rational self-consistent field (MCSC¥jconfiguration interac-
the electronic structure in this region requires both the tion (CI)2° wave functions. In the MCSCF/CI approach the

energies, E(R), and derivative couplings,f:f(R) = adiabatic electronic state¥(r;R), are expanded in a config-
W (r;R)|(8/0R,) Wy(r ;R)LI, where uration state function (CSP)basis
[H(r;R) — E(R)]W,(r;R) =0 ) N
W (r;R) = ZCQ(R) Yo (riR) ©)
andH(r;R) is the nonrelativistic electronic Hamiltonian. In this a=

work the energetics and derivative couplings in the vicinity of | )

a conical intersection are analyzed using degenerate perturbatiofVhere thec!(R) satisfy

theory and quantities readily obtained from electronic structure |

calculations employing analytic gradient techniques. As dis- [H(R) — E(R)c(R)=0 4)

cussed by Meddand subsequently by Kuppernfanhen the

total energy available to a system exceeds the maximum energyl he molecular orbitals used to build ther;R) are obtained

on the lower adiabatic potential energy surface along a closedfrom a state-averaged MCSCF procedtfre.

loop surrounding a conical intersection (this energy may be A. Degenerate Perturbation Theory in a Crude Adiabatic

much less than the energy at the conical intersection itself), Basis. Assume thaRy s a point of intersection of two potential

adiabaticnuclear dynamics on that potential energy surface may energy surface€(R), | =1 - 2. A new basis foH(r;R) is

be altered by the geometric phase effeét. An approach for constructed from a fixed, geometry-independent transformation

analyzing these energetics is suggested. Another goal of thisof the CSF basis. The first two components of the basis are

study is to assess the precision of derivative couplings, evaluated®' (R ¥(;R), I = 1 - 2, satisfying eq 4. Denote this as the

with techniques previously introduced by the author together Q-space. Its orthogonal complement is tRespace. The

with Lengsfield and Sax&;1° in the vicinity of a conical  orthonormal functions in the-space, denote@ (R, %(r;R),

intersection. This analysis is important since surfaces of K = 3 - N°SF, need only be orthogonal @(R,)" ¢(r;R), | =

derivative couplings determined b initio techniques for ~ 1-2. TheCX(R,) are not, in general, eigenfunctionstd(R).

systems exhibiting conical intersections are highly desirable. This basis has only a limited geometry dependence through the
Section Il presents the theoretical development providing the CSFs. It is similar to the “crude adiabatic” basis introduced

perturbation analysis and its connection to electronic structure by Longuet-Higgins in his classic treatment of the Jahn-Teller

calculations. The perturbation analysis is based on the semina@nd Renner-Teller effectsand will be denoted as such

work of Mead on conical intersections irsXholecules! See subsequently.

also ref 4. Section Ill considers théAl - 2!A’ seam of conical In the crude adiabatic basis, at aRy eq 4 becomes
intersections in Hell This system was selected for analysis
because the seam of conical intersections involves nuclear [HR(R) — IE(R) HQP(R) gR)| (0 5)
configurations with only Cs sy.mmt.atry SO that.symmetry HPQ(R) HPPR) — 1E(R) [\E'(R) 0
arguments cannot be used to simplify the analysis. This seam
of conical intersections is relevant to the electronic quenching where
reaction T :

HS%(R) = ¢'(R) H(R) ¢'(R) (6a)

Hy(B'S)) + He— Hy(X'S;) + He 2)

HY(R) = CX(R)"H(R) ¢'(R 6b
which has been the subject of much theoreticaf and i< () (R)THR) cR) (6b)
experimentdl—1° interest in the recent past. Section IV PPy ~Kym A L
summarizes and suggests directions for future research. Hi (R) = C*(Ry) H(R) c(R) (6¢)

t Supported by NSF grant CHE 94-04193. fo_r I,J < 2andK, L > 2. Here and below the lettetrsandJ
® Abstract published ildvance ACS Abstractdday 1, 1997. will be used to denote the two degenerate states.
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At a ngighboring .nuclear configu'ratioR, = 0R + Ry, the = H%f + Hﬁ’E(R) (14b)
Hamiltonian matrix in the CSF basis becomes
SH(R) where we have observed thdf"(R,) = 0. Through second
H(R) = HR) + Z X R, + order in perturbation theory
= X
oL aR(l
#PH(R,) [H™(R) — IWPR)IEY(R) =0 (15a)
1/2 oR oR, (7) _ _

%; " 9Ry0R, EYR) =[ERY — H™I ' H"™(R) &(R) (15b)

Note that the changes HH(R) result from both changes in the  and

Hamiltonian operator, through the electron - nuclei attraction

term, and changes in the molecular orbitals used to construct A29R) — WARIE(R) + THYAR) — WORIEY(R) =
the CSFs. Thus, in the crude adiabatic basis [H™R) FRIST(R) +HTHR) RIS E) 216)

HR) = E(R) + d'(R)"0R + ,0R™5'(R):0R (8a) which implies

= H% + H;%(R) + Hi(R) (8b) BI(R) =

HRR) = hP(R)"-OR + 1,oR "R )-0R  (9a) &7 (RIE¥R)H*AR) ERIWI(R) — WP(R)] (17a)

= HY(R) + H2(R) (9b) WAR) = E(R)" H*¥(R) £ (R) (17b)
where we have observed tHa€%(R,) = 0, H{3(R,) = Ei(Ry), where
defined: ~
H*Y(R) = H*(R) + H'¥RIIIE(R,) — H*1 T H'Y(R)
oH(R
G =R TEOCR)  (0a (18
, Note that the geometry-independéfit become the geometry-
I H(R) dependeng®(R) by requiring eq 15a.
| _ Al T {
ﬂﬁa(R) =c(RY mﬂ c(Ry (10b) It is useful at this point to define, thg-h(Ry) plane by the
A vectorsgM(R,) = g’(Ry) — d'(Ry) andhM(R,), and its orthogonal
and complementg-h7(R,), a space of dimensioN" — 2, where
Nint is the number of internal degrees of freedom. From egs 8,
IH(R) 9, and 15a it is seen that only in tgeh plane is the degeneracy
hlf(R) = c'(Rx)Ta— CJ(RX) (11a) lifted at first order in perturbation theory.
Ry Using egs 811 in eq 15a gives
PH(R .
1(R) = (R 5 6()RZ CR)  (11b)  [CAHE HP (&
1, 1, %0,
y HIJQ AHIJQ g
Note that atRy, gL(R,) = dE(R)/IR,. ¢'(R) andhP(R) are —gx hx + hy 24 _ 24 19
readily determined using analytic gradient technigtedereas hx+ hy gx ~<2),| —€ ~(21I (19)

then' andp" are quite costly to evaluate for MCSCF/CI wave
functions.

Consider, following Mead! £'(R), E'(R), andHRYR) to be
expanded in a power series dR as follows

wherex = p cos 6 [y = p sin 6] is the displacement along
gY(Ry) [9Y(RY], a unit vector in nuclear coordinate space
parallel [perpendicular] tag’(Ry) in the g-h(Ry) plane; z

represents the internal nuclear coordinates in gHe!(R,)
ER=E"R)+E'R+ER+.. (123)  aniold, '

| 1) 2
ER)=E"(R)+E(R) + ... 12b

(R) = 27(R) +E7(R) (A2)  AHS(R) = (HIXR) — HIAR))/2 =
with the expansion dfiRSgiven by eqs 8b, 9b, and (to the order

required here) AH(R) + AHZ(R) (20a)

H(R W/(R) = (0,0 0,2,9) =

HER) = TORY D R R = MR (1) O PO G0E
¢ R, €(0,0) +sx+ sy + sz*-z (20b)
HIF(R) = CY(R)"H(R) CKR,) +
- ! ? HER) 9= I"(R,)I/2 (21)
C'R) ——C*R 14

200 g mCRIR, 44 ho=h"R)G"R,) (222)
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h, = h"(R)-g"(R) (22b) at a conical intersection can be used to assess the precision of
Y * the numerical procedures used in their evaluation.
s.=[g(R) + PR-G(R)2 (23a) f2(R), consists of two contributions
X4 X X
_ f2R) =“FIR) + “F IR 27
s =10(R)+ PRIPCRY2  (23b) (R =R+ TaR) (27)

and s, is the projection of §'(Ry) + ¢g’(RJ]/2 onto the where the Cl contribution is given by

g-h“%(R,) manifold. Equivalent results are obtainedhif(R) . 9 - _ 9
& taken as thacands. MR = FR (5 2R) + R 2R) (22
Equation 19 can be transformed into a more convenient form

by definingq(#) andA(6) and the CSF contribution has the form
A(6)* = ¢ cog 0 + (h, cos + h, sin6)* = g cos’ 0 + i 1 Dﬁ a D '
h? sir’(6 + o) (24a) (%)= ;C‘(R) NR)‘EX PR T ol 0

cosd = g/q cost sini = hgsin@® + o) (24b) In the vicinity of a conical intersection the CI portion of the

so that eq 19 becomes: derivative coupling is preemineftalthough both contributions
will be evaluated in the MCSCF/CI treatment.
—cosA  sina |(& E9 The first term in eq 28a contains the first nonvanishing
i zo1 |~ €| 2 25) ibution to the derivati ling. The form of this t
sin cosa [\ 201 |~ €| zo1 ( contribution to the derivative coupling. The form of this term
2 2 can be deduced from eqs 17a, 17b, and 26b. In the development

The eigenvalues and eigenfunctions (in the CSF basis) of eqthat follows we restrict our attention to triatomic molecules for

= K- = K+ which the orientation of the-h plane is constant along the
25 are (forl =K~ andJ =K") crossing seam. This approximation is valid for tH&1- 21A’
€x= = £0q(6) (26a) seam in HeH and has been used previously by Kendrick and
Pack in their treatment of the geometric phase effectid.€25
Eo,w 6) cosA(0)/2 —sinA(6)/2)\[c(R)T ¥(riR) With this assumption and sindé(R) is real-valued
J— X, H
X (0)] \sina0)2 cosk(0)/2 \cHRy" y(riR) H2(R) = p[A0,2) 0, + B(6.,2) 0] (29)

(26b)
whereoy anda; are the Pauli matrice?,
where as the notation in eq 26b indicates fhdependence of
the CSFs,y(r;R), is subordinate to that induced by the A(p,0,2) = z(a, cosf + a, sin6) + p(a; cos O +
perturbation expansion. ) )
Thus the parameters in eqs 213, which are readily a, Sirt 0 + a; sin 6 coso) (30a)
evaluated using analytic gradient techniques, determine the
topology of the potential energy surfaces in the immediate B(p.0,2) = z(b; cos6 + b, sin6) + p(b, cos 6 +

vicinity of a conical intersection. We will refer tp, 6, andz b, sir? 0 + b. sin 6 cos®) (30b
as canonical coordinates agt(Ry), hV(R,), ands(Ry) as the 4 ° ) (30b)
characteristic parameters. It is important to observediig) and the contribution from a unit ( 2) matrix has been ignored.

andc(Ry) are defined up to a one parameter rotation so that Transforming to th&®%* basis by notings, = u(i)* ox u(d) =

only theg-h plane is uniquely defined. Thus while the definition _g; 5 o, + cos). 6, and, = sin A gy + cos’. g, whereu(l)
of the x-axis is fixed oncec'(Ry) and c(Ry) are defined, it is is the 2x 2 matrix in eq 26b gives '

not unique and the parametegd(R,), hY(R,), ands(Ry) are

nottyni(qI:JIe either. This point will be considered further in 29 = p[(Acosi — Bsini)g, + (Asini + B cost)s,]
section 111

B. Geometric Phase Effect.From eqs 24 and 26b it is seen (31)
that when the electronic wave functions are transported aroundgg that
a circle in theg-h plane, that is wher® increases by 2, 1
increases by 2 but sincel/2 only increases byr, £9K* — 2 =01, (A(p,0,2) SinA(0) + B(p,0,2) cOSA(0)) 10,
—E0K* This is the geometric phase effé@&?5 If the (infini- E=8"+ 2q(9) §
tesimal) closed loop does not contain a point of conical (32a)

intersection, nondegenerate perturbation theory suffices and a )

sign change on transporting the electronic wave function around BB (Alp,8,2) sinA(0) + B(p,0,2) cosA(6)) £

a closed loop is not possible since the zeroth-order component = 29(0)

can never vanish. (32b)
C. Derivative Couplings. In conventional uses of degener-

ate perturbation theory, lower order wave functions are used to

determine higher order energies. Mead obsédttht in the . 9 -

presence of a conical intersection higher order energiemef )" 7 By =112 (33a)

potential energy surface could be used to infer information about

lower order wave functions for both states and hence about the 203, 1 0 =0

energetics on the companion surface and the derivative cou- §7(0) 5‘5 (0)=0 T=p2Z (33b)

plings; see for example eqs 17a and 17b. Here we focus on

the derivative couplings since knowledge of their limiting form gives for the first nonvanishing terms

Noting, from eq 26b that
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_ad L |gY2ising + w/2) h)
“NR) = 1/2E =1/2 70) (34a)
“f2(R) = my(6)/a(6) (34b)
9t (R) = my(6)/q(6) (34c)
where

m,(6) =T, cos@ + ¥,) + [(a,, cos D + a,, sin 8)sinl +
(b, cos D + b,, sin W)cosl] (35a)

m,(0) = &, cosP — a,) sin1 + b, cos@ — f3,) cosi (35b)

and the “barred” constants can be obtained fromahand b;

in eq 30 by straightforward algebra. Y and hVY are
perpendicular and of equal length, the right hand side of eq
34ais 1/2. The — 0 limit of 3 (p,0,2) obtained here in the
absence of spatial symmetry differs qualitatively from the
symmetry-determined Xcase for whicH J'(p,,2) — 0 asp —

O.ll

D. The Circulation of the Derivative Coupling. From eq
34a, the circulation of Y(R) along an infinitesimal loop in the
g-h plane surroundingdry is given by:

ffUR)dR = [T12d =7 (36)
However, ifC does not contain a point of conical intersection,
then the circulation of Y(R) approaches 0 as decreases to
zero. Thus the line integral in eq 36 can be used to prove the
existence of a conical intersection point. Below it will be
convenient to denote a circle in tlggh plane with origin O
and radiusp, by C(p,0) and to denote the set of values of a
functionw(R) on C by w[C].

The inverse of the transformation in eq 26b provides a
transformation to a basis that removes the singularity in the
derivative coupling. Thus the angl6) can be used as the
rotation angle of a transformation to approximate diabatic states.
This transformation can be used together waithinitio energies
and derivative couplings to extend the standard two-dimensional
treatment of a Jahn-Teller probléfto nonCs, molecules. In
the present approach the interstate coupling would consist of
both potential and derivative coupling contributions. The
residual derivative coupling would be nonsingular but would
be more than just the nonremovable part, the portion of the
derivative coupling that cannot be removed by a transformation
to approximate diabatic staté&.In this regard note that the
quantity

Yarkony

He

H2

Figure 1. Unit vectors in the directionB(Rmey) andg’(Rmey" (the
component ofgY(Rmey in the g-h plane perpendicular ta”(Rmey),
represented in terms of atomic displacements. Also displayed are the
Jacobi coordinate®}, r, y.

where «(C) = 0O[x] if C contains no [one] point of conical
intersection represents a measure of the nonremovable part of
the derivative coupling®2°

lll. The 1A’ - 21A" Seam of Conical Intersections in
HeH,

For the triatomic molecule HeHmolecular geometries will
be specified by the Jacobi coordinatesthe H—H? distance,
R the distance between He and the center of massoaitly
the angle between the line segments correspondifaiodr,
such thaty = 90° for C,, geometries. See Figure 1. The
adiabatic electronic wave functions are based on a second-order
Cl expansiof? using a foura orbital active space and
He[7s2pld], H[6s3p] basis sets as described in detail previ-
ously? This level of treatment was previously used to
determine pointsRy, on the A’ - 21A’ seam of conical
intersections which was parameterized pthat isR«(r) = [R(r),
y(r), r]. Here twoR(r) will be considered, the minimum energy
crossing pointRmex = Rx(3.7294) andR(4.0). In this work
the x-axis is taken along" so that Table 1 reportg, v, r, g,

— 1J . — . . .
A(C) = ’{Cf (R)-dR — «(C) (37) h, ands for these two points. Figure 1 depia¥(Rmey and
TABLE 1: HeH ; 1'A’ - 21A’ Crossing Seam
r (ao) E (kcal/mol)
R (a0) y (deg) AE (cm™) h (au) g (au) s (au)
Rmex: Rx(373)
1.5662 3.7294 —38.141 0.0879 0.0181 —0.0558
44.373 0.020 0.1630 0.2051
0.0002
R(4.0)
1.6601 4.0000 —36.891 0.0753 (0.1244) 0.01350.0821) —0.0069 (-0.2178)
40.316 0.021 0.1607 (0.0972) —0.2336 (0.0849)

aAE = Extar — Etar. E = Ejta ~ Eota relative toEstar

0.0070 (0.0070)

3.650 107 au at = 2.393 3, R= 50 @. ForR4(4.0) the second parameter set is

given parenthetically. Fag ands, x,y andx,y,z components are given down the corresponding column.
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Qilis [T T T rr o) 14 a 100 [ —] 30
20
50
10
m
= N
= 2 e ° g
= 2 >
o =
-10
-50
20
-100 -30
-90 -45 0 45 90 135 180 225 270
90 -45 0 45 90 135 180 225 270 6(deg)
o(deg) b 002 [ 1.0
1.2 T L :
b ‘ 0.00 | ] 09
i 0.8
-0.02 |
_ I 107
3-0.04 I ]
w i 106 o
-0.06 [ ]
- 105
-0.08 ]
i 1 0.4
-0.10 | 03
042 R T B R B 0.2
-90 -45 0 45 90 135 180 225 270
6(deg)
¢ 0.10 T T T T T T 0.3
90 -45 0 45 90 135 180 225 270
o(deg) 1
. | 0.2
Figure 2. Eita[C(p,R«(4.0))], Exa[C(p,R«(4.0))], (&), and 0.05 1
fo[C(p,Rx(4.0))], (b), from MCSCF/CI wave functions fgg = 0.1 I
with C(p,R«(4.0)) obtained from two distinct parameter sets in Table 1
1. Open markers represent the first parameter set, filled markers the s 701
second (parenthetical) parameter set. Energies are in eV relative to 0.00
Eita(R«(4.0)) = —3.710 887 au. o I Sy
- < 0o P
hY(Rmey). ForRy(4.0) two sets of characteristic parameters are ) I =
reported. Note that although the'(Ry), ¢ J(Ry)) pairs associ- -0.05
ated with these two sets of parameters are related by a rotation, [ 1 o1
the correspondinggP(Ry), hY(Ry)) pairs are not so related.
A. Rotational Invariance of Conical Intersection Param- ol 1
eters. As observed above while thg-h plane is uniquely 0101 0.2
defined, the vectorg” and h", and hence the characteristic
parameters for the conical intersection, are arbitratry up to a
one-parameter rotation. One measure of the precision of the -0.15 0.3
numerical procedures used to determine the characteristic 90 -45 0 45 90 135 180 225 270
parameters is provided by the consistency of two sets of 6(deg)

characteristic parameters at a particular point on the surface of

conical intersection. Table 1 reports two such sets of charac-Figure 3. (&) £[C(o,Rmeq], 7 =, R, y for p = 0.01, fromab initio
teristic parameters foR,(4.0). The equivalence of these calculations. (bFra[Clp.Rmey], triangular markers, anf{C(p.Rme],

. . quare markers, fop = 0.01. Filled markers are fronab initio
parameter sets can be demonstrated in many ways. Figure 2a, alculations; open markers are from perturbation theory using the

provides one such demonstration reportfC(0.1Rx(4.0))] parameter set in Table 1. (C)/€(o,Rme)], 7 = z (filled circles), p
andfs[C(0.1R.(4.0))], respectively obtained from MCSCF/CI  (open circles) for = 0.01 fromab initio calculations.



4268 J. Phys. Chem. A, Vol. 101, No. 23, 1997 Yarkony

a 045 [T T e a 800 [T
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0.10 [ ha N 2.00

0.05 ? 1.00 [

T i 3 000 F K
S o000l R BT
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6(deg) p 180T
b [078< 0 S B B R I AEL AL B X p=0.50
r 10.0
0.20 [ I
0.10 50
s I
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. 0.00 T u I
S o0 ™
& r I
T 00|
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-0.20 | I ]
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L ’ ° 1 -90 -45 0 45 90 135 180 225 270
-0.40 P P NI EUEN EEEN EVER M R o(deg)
.90 -45 0 45 90 135 180 225 270 ¢ 600 T T T
6(deg)
Figure 4. Convergence of,fC(p,Rmey] from ab initio calculations 50.0
for p = 0.25 (solid squares), 0.1 (solid circles), 0.06)(and 0.01
(open circles); (ay = z, (b) T = p.
40.0 I
wave functions withC(0.1R4(4.0)) determined from these two i
sets of characteristic parameters. Here and below Jhe 3007
superscript on the derivative coupling will be suppressed. From d i
this figure it is clear that the solid curves (first parameter set) w 200 [
can be brought into coincidence with the dashed curves (second I
parameter set) by a shift 6f120°. i
B. Energies and Derivative Couplings: Comparison with 10.0 1
the Linear Expansion. We next turn to the energetics and I
derivative couplings in the immediate vicinity of a conical 0.0 Fee
intersection, usindRmex. Figure 3 considers = 0.01. Figure I Eou
3a reports;[C(0.01Rmey)], T =1, R, y. The large values of L oo (ot ’) ]
-10.0 ——— . — — —

the derivative couplings in this Jacobi representation are
consistent with the small value pf The size of the derivative
couplings in this representation suggests that numerical problems 8(deg)

may be obtained when transforming to the “canonicalp, 6,

representation. However this is emphatically not the case.

Figure 3b reportsEr'w[C(0.01Rmed] and f[C(0.01Rmed] Figure 5. EyalClp,Ruen] for p = 0.25 (a), 0.50 (b), and 0.75 (c) as
determined from MCSCF/CI wave functions and from eqgs 20b, determined fromab initio calculations E(ab), and from egs 20 and
26a and 34a using the parameter set from Table 1.26a,E(pt-1).

90 -45 0 45 90 135 180 225 270
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E1a[C(0.01Rmey] and fg[C(0.01Rmey)] calculated from MC-
SCF/CI wave functions areirtually identical with those
obtained from first-order perturbation theory. Figure 3c reports
f,[C(0.01Rmey] andf[C(0.01Rmey] determined fromab initio
calculations. On the basis of the results in Figure 3b, and as

discussed below, these values are expected to be close to their

p = 0 values. While the specifics of th@dependence of
f.[C], T = p, z require second-derivative informatiemore
expensive to obtain than the derivative couptifigis worth
noting thatf,[C] has higher frequency oscillations th&iC]
which is consistent with the functional forms in eqs 34b and
34c.

The p-dependence of[C] is considered in more detail in
Figure 4. This figure, which reportfC(p,Rmex] for p = 0.25
(solid squares), 0.1 (solid circles), 0.05 (x), and 0.01 (open
circles), illustrates that[C(p,Rmex)], T = z (Figure 4a), and
= p (Figure 4b) in fact converge to a finite limit in a well-
behaved manner gs— 0. In this regard observe that for<
0.05 the results are indistinguishable.

The excellent agreement between the perturbation theory and

the MCSCF/Cl-based results in the immediate vicinity of the
conical intersection serves to confirm the precision of the
numerical techniqués?® used to evaluate the derivative cou-
plings in this most challenging, yet essential, region of
coordinate space.

C. Energetics and Derivative Couplings along Closed
Loops in the g-h Plane. We now consideiE;ia[C(p,Rmex]
and £[C(p,Rmey)] for p = 0.25, 0.50, 0.75. These calculations
address two issues of practical importance for the dynamics of
reaction 2, the energy of the lower adiabatic potential energy
surface relative to that of the conical intersection, and the
nonremovable part of the derivative coupling. As discussed
by Mead and subsequently by Kuppernfawhen the total
energy available to a system exce&glgC], adiabaticnuclear

J. Phys. Chem. A, Vol. 101, No. 23, 1994269
(p=0.5, 8=—90°)

He

H|
HZ
(p=0.5, =907
He

H' H2

Figure 6. Nuclear configurations corresponding to the low-energy
region (lower panel)§ = 90°, R(He—H') = 3.06 a, R(He—H?) =
2.02 @, andR(H!—H?) = 4.03 @&, and high-energy region (upper panel),
0 = —90°, RHe—H!) = 3.32 a, R(He—H?» = 0.653 @, and
R(H!—H?) = 3.45 & of Eyta[C(p = 0.50Rmey)].

Evaluation ofA(C), eq 37, provides a quantitative measure
of the size of the nonremovable part of the derivative coupling.
NearRmex We find [o, A(p, Rmey] = [0.005, 0.000%], [0.01,
0.000%], [0.05, 0.0004], [0.1, 0.0014], [0.25, 0.0094], [0.5,
0.0485t], [0.75, 0.051%]. Note that the calculation of the

dynamics on that potential energy surface may be altered byderivative coupling is tractable even for= 0.005. The values

the geometric phase effect. In this regard part ¢ ofFigure

5 evince significant barriers along such closed loop¥ at
—90° for p = 0.25, 0.50, and 0.75, respectively, while
particularly favorable energetics occurét~ 90°. Thep =
0.25 results suggest the following interpretatio;[C] is the
sum of two contributionsH (p,6,zs) and —q(0)p (always
negative); see eqs 20b and 26a. Thus the large valug, of s
compared wittlg andh precludes a low-energy path surrounding
Rmex This interpretation is also supported by the smaésults

in Figure 3b. A similar situation is found fdry(4.0). See
Figure 2a.

Additional insight in this regard is provided by Figure 6 which
depicts the nuclear configurations fpr= 0.5 andg = £90°.
From this figure it is seen that the barrigr ¢ —90°) occurs
for configurations characterized as-HHeH and results from
the small value of R(HeH?). This is, in turn, a consequence
of the small value of R(HeH?) at Rmey, R(He—H?) = 1.05 a.
Note from Figure 1 thaf = £90° is largely an He-H? stretch.
Note too that HeH is not bound in its ground electronic state.
The favorable energetics occur for triangular-He—H con-
figurations. Quite the opposite situation was found far®H
For the 2A’' ground state of bk the maximum of
E12a[C(0.5Rmey)] is less tharEiza(Rmey) by approximately 1.3
eV. In this case,s= s, = 0, and the H+ H, configuration is
energetically favorable.

This analysis suggests that the energetics in the vicinity of a
conical intersection can be profitably analyzed in terms of the
characteristic parameters presented in eg231l Future studies
will attempt to better understand the relationships anié,

s, the configurations alonG(p,Rmex), and henc&,[C(p,Rmexy)]-

of A(C), which represent a deviation of at most fom the
removable result, show that the nonremovable part of the
derivative coupling is small even fgr = 0.75 &, for which
Ejia is, in turn, quite large for a significant portioB. See
Figure 5¢c. Consequently it should be possible to construct
diabatic states to an excellent approximation for this system.
This question will be considered in detail in a future work in
which energy and derivative coupling surfaces will be reported
for the 2A’ and 2A’ states. An analysis of the nonremovable
part of the derivative coupling for fhnalogous to that discussed
above can be found in ref 29. A formal analysis of the
derivative couplings in glcan be found in ref 11.

IV. Summary and Conclusions

The derivative couplings and the energetics in the vicinity
of a conical intersection have been considered. Using degener-
ate perturbation theory it is shown that previously developed
analytic gradient based techniques provide a reliable method
for evaluating derivative couplings in the immediate vicinity
of a conical intersection. These numerical procedures can
therefore be used to determine an entire surface of derivative
couplings that will reliably merge into regions of conical
intersections. The analysis yields an approximate diabatization
scheme that can be used in conjunction \althinitio, derivative
couplings, and potential energy surfaces to extend the standard
two-dimensional treatment of the dynamic Jahn-Teller effect
to molecules that do not possesg, symmetry.

The A’ - 2'A’ seam of conical intersections in Hgkas
considered. It was shown that a barrier along closed loops
surrounding points on the seam of conical intersections is
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attributable to the energetically unfavorabletHHeH structure (11) Mead, C. AJ. Chem. Physl1983 78, 807.

and that this barrier is reflected in the characteristic parameters, (12) Farantos, S. C.; Murrel, J. N.; Carter,Ghem. Phys. Let1984
for tht_e conical intersection deter_mlned f_rom ar}alytlc_grad|ent (13) Farantos, S. QViol. Phys.1985 54, 835.

techniques. It will therefore be interesting to investigate the  (14) Perry, J. K.; Yarkony, D. RJ. Chem. Phys1988 89, 4945.
relation between energetics in the vicinity of conical intersec- _ (15) Pemnot, P.; Grimes, R. M.; Lester, W. A., Jr.; Cerjan,Gbem.

. o ich Phys. Lett1989 163 297.
tions and the characteristic parameters for molecules for which (16) Manaa, M. R.; Yarkony, D. Rl. Chem. Phys1990 93, 4473.
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1604.
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